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Introduction     1

Hydrogeologic Atlas of Aquifers in Indiana

By Joseph M. Fenelon, Keith E. Bobay, and others

Abstract

Aquifers in 12 river basins (water-manage-
ment basins) in Indiana are identified in a series of
104 hydrogeologic sections and 12 maps.  Details
of water-bearing units, including a generalized
potentiometric surface, are derived from logs of
more than 4,200 wells along 3,500 miles of section
lines.  Logs were obtained from water-well records,
oil- and gas-well completion reports, coal-drilling
records, and observation-well records.  Well logs
generally are plotted at 0.5- to 2-mile intervals.
Hydrogeologic sections are spaced 6 to 20 miles
apart.  The horizontal scale of the sections is
1:250,000; vertical scale is greatly exaggerated.
The scale of the maps depicting aquifers is
1:500,000.  Aquifer maps are based on information
from hydrogeologic sections and from previous
studies.  Where a type of aquifer was less than
15 square miles in areal extent, it was not mapped
because of scale limitations.  Types of aquifers
depicted in the illustrations include unconsolidated
and bedrock aquifers.

Unconsolidated aquifers are the most widely
used aquifers in Indiana.  Types of unconsolidated
aquifers include surficial, buried, and discontinuous
layers of sand and gravel.  Most of the surficial sand
and gravel is located in large outwash plains in
northern Indiana and along the major rivers in the
southern two-thirds of the State.  Buried sand and
gravel aquifers underlie much of the northern two-
thirds of Indiana, where they are typically inter-
bedded with till deposits and can be 10 to 400 ft
deep.  Discontinuous sand and gravel deposits are

present as isolated lenses, primarily in glaciated
areas.

Wells completed in the bedrock aquifers
generally have lower yields than wells in most of
the sand and gravel aquifers, but the bedrock
aquifers are areally widespread and a major source
of water for many domestic users and some large
users of ground water.  Carbonate rocks (limestone
and dolostone); sandstones; complexly interbedded
sandstone, siltstone, shale, limestone, and coal; and
an upper weathered zone in low permeability rocks
comprise the types of bedrock aquifers. Aquifers in
carbonate rocks of Silurian, Devonian, and Missis-
sippian age underlie about one-half of Indiana and
are the most important of the bedrock aquifers in
terms of yield and areal extent.  The other principal
type of bedrock aquifer is sandstone, which under-
lies large areas in the southwestern one-fifth of
Indiana.  The mapped sandstones are located within
deposits of complexly interbedded sandstone, silt-
stone, shale, limestone, and coal of Mississippian
and Pennsylvanian age.  These complex deposits
yield small quantities of water of variable quality,
but they are important if they are the only available
aquifer in a particular area.  The remaining bedrock
aquifer, which is used when it is the sole source of
water for an area, is an upper weathered zone
developed primarily in siltstone and shale of Mis-
sissippian and Devonian age and, to a lesser extent,
in some of the shale and limestone of Ordovician
age.  No aquifer is mapped in the southeastern
corner of Indiana, which is underlain by shale and
limestone of Ordovician age.

INTRODUCTION

Ground water is the source of drinking water for
nearly 60 percent of the residents of Indiana.  Approxi-
mately 425 community water systems, 3,000 noncom-
munity water systems, 500 mobile-home parks, and
500,000 private homes are supplied by wells (Indiana
Department of Environmental Management, 1990,
p. 223; Indiana Department of Natural Resources,
1989, written commun.).  In addition to drinking-water
supplies, ground water is withdrawn for energy
production, irrigation, and industrial, commercial, and
agricultural uses.  In 1991, about 204 Bgal (billion
gallons) of ground water, or a daily average of
559 Mgal (million gallons), was withdrawn.  The
combined capability of registered ground-water with-
drawal facilities in 1991 was 3,540 Mgal/d (million
gallons per day) (Indiana Department of Natural
Resources, 1993, written commun.).

Ground water is an important and abundant
natural resource in Indiana; however, detailed maps
and descriptions of the majoraquifers1 that pertain to
the entire State have not been available.  Published
reports are currently limited to county-wide studies, a
few basin studies, detailed site-specific investigations,
and large-scale maps and assessments of the aquifers
in the State.

The Indiana Ground-Water Protection and
Management Strategy lists the delineation and
mapping of aquifers as a primary need (Indiana
Department of Environmental Management, 1987).

1Terms in bold are defined in the “Definitions of Selected
Terms” at the back of this report

The Strategy states that nearly all aspects of ground-
water regulation, research, and utilization in the publi
and private sectors can benefit from maps and descri
tions of the aquifers in the State.  Therefore, one of th
short-term goals of the strategy was the creation of a
ground-water atlas of Indiana that would identify
generic aquifers on a large scale (Indiana Departmen
of Environmental Management, 1987, p. 5).  The term
“generic” was used to imply that aquifers do not nece
sarily conform to geologic age, group, or formation.

In response to the need for such an atlas, the
U.S. Geological Survey (USGS), in cooperation with
the Indiana Department of Natural Resources (IDNR
and the Indiana Department of Environmental
Management (IDEM), prepared a series of hydrogeo
logic sections and maps that identify aquifers in 12
water-management basins of Indiana (fig. 1).

Purpose and Scope

This atlas describes and delineates aquifers in
the Lake Michigan, St. Joseph River, Kankakee Rive
Maumee River, Upper Wabash River, Middle Wabas
River, Lower Wabash River, White River, East Fork
White River, Whitewater River, Patoka River, and
Ohio River water-management basins in Indiana.  Th
hydrogeologic sections were constructed at a hori-
zontal scale of 1:250,000, whereas the maps were
drawn at a scale of 1:500,000.  The vertical scale of th
sections is greatly exaggerated.  Also included are
maps that show the location of the hydrogeologic
section lines, the thickness of unconsolidated deposit
(from Gray, 1983), and the bedrock geology (from
Gray and others, 1987) for each basin at a scale of
1:500,000.
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As defined in this atlas, an aquifer is a geologic
formation, group of formations, or part of a formation
that contains sufficientsaturated permeable material
to yield quantities of potable water adequate for
domestic purposes (Lohman and others, 1972, p. 2).
Location and delineation of aquifers throughout
Indiana is the primary goal of this atlas.  Types of
aquifers are distinguished by lithology, thickness,
depth, and continuity.

The hydrogeologic sections and areal maps can
be used to understand and evaluate aquifer systems on
a regional scale.  This regional evaluation can then be
used as a base for site-specific studies.The sections
and maps, however, do not replace site-specific
hydrogeologic data.  The well logs used to plot
sections were obtained from a 2 mile-wide path that
bounded the traces of the sections.  Thus, the data
shown at a given location might not represent site-
specific hydrogeology.

A glossary of hydrogeologic terms used herein is
at the end of this report.  Bedrock geologic names in
this report follow the nomenclature of Shaver and
others (1986).

Previous Studies

The ground-water resources of Indiana have
been studied by many authors since the early 1900’s.
Harrell (1935) described the general physiographic
features, hydrology, geology, and ground-water
resources of each county in the State.  Bechert and
Heckard (1966) discussed the availability, flow,
quality, and uses of ground water in Indiana.  Bloyd
(1974) summarized the ground-water resources of a
region that includes greater than 80 percent of Indiana
and provided regional estimates of hydraulic conduc-
tivity, specific yield, storage,recharge, and current
and projected withdrawals.  Clark (1980) characterized
the availability, use, regulation, and future needs of
ground water in Indiana.  Geosciences Research
Associates, Inc. (1982) summarized the “potential
yield capability” and the water quality of the major
bedrock hydrostratigraphic units in the State.  The
USGS (1988, p. 245-250) described the water quality
of the principal aquifers of Indiana.  The USGS is

studying the flow and water quality in the regional
carbonate bedrock and glacial aquifer system in
Indiana (Bugliosi, 1990; Casey, 1992; Schnoebelen,
1992).

The location and extent of ground-water
resources or aquifers in Indiana have been mapped by a
few authors.  Bechert and Heckard (1966, p. 109)
mapped the availability of ground water on the basis of
yields from “properly sized and developed” wells in
eight ground-water provinces of Indiana.  Gray (1973)
mapped the general location and described “the
principal resource units in ground-water production”
for Indiana.  Clark (1980, p. 33) updated the ground-
water availability map of Bechert and Heckard using
seven potential yield categories that were devised from
a “range of probable maximum yields which can be
expected from a properly constructed large-diameter
well penetrating the full thickness of the aquifer.”
Geosciences Research Associates, Inc. (1982) mapped
the structure and contour of the major bedrock hydro-
stratigraphic units in Indiana on the basis of geologic
age and formation.  The USGS (1985, p. 207) mapped
the principal aquifers of Indiana as glaciofluvial,
glacialoutwash, sand and gravel lenses intill  of
Wisconsinan age, carbonate rocks of Mississippian
age, and carbonate rocks of Silurian and Devonian age
(1:5,000,000 scale); however, a large area of south-
western and south-central Indiana was mapped as
being without a principal aquifer.

The Indiana Department of Natural Resources is
preparing water-resource availability studies for the 12
water-management basins in Indiana.  Published
reports are currently (1990) available for the St. Joseph
River, Whitewater River, and Kankakee River basins.
These reports include maps that show the extent of
aquifers, compositepotentiometric surface maps for
unconsolidated andbedrock aquifers, a discussion of
hydrogeologic characteristics, and information on
ground-water quality and use.  This atlas differs from
these studies in the method used to delineate and name
aquifers (generic aquifer types as compared to formal
aquifer names for different geologic settings) and in the
emphasis on the vertical distribution of the aquifers as
shown in many detailed hydrogeologic sections.
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PHYSICAL SETTING OF INDIANA

    The physical setting of Indiana, which includes
the physiography, climate, and geology, controls the
distribution, availability, and flow of ground water.

Physiography

Indiana has been divided into 13 major physio-
graphic units (fig. 2) on the basis of similarities in topo-
graphy and geology (Schneider, 1966, p. 41).  The 13
units occupy 3 broad physiographic zones that trend in
an east-west direction across the State.  The zones are the
Northern Lake and Moraine Region, the Central Drift
Plain, and a southern zone dominated by bedrock
landforms.

The Northern Lake and Moraine Region is subdi-
vided into five lake (lacustrine) or morainal units:  the
Calumet Lacustrine Plain, the Valparaiso Morainal Area,
the Kankakee Outwash and Lacustrine Plain, the

2Person is no longer employed with the agency.

Steuben Morainal Lake Area, and the Maumee Lacus-
trine Plain (fig. 2).  A variety of glacial and postglacial
landforms are in this 8,500 mi2 area.  Glacial deposi-
tional features include end moraines, till plains,outwash
plains andvalley trains, kames, and lake plains.  These
landforms have a diverse mix of sediments with highly
variable hydrogeologic properties and numerous litho-
logic discontinuities.  Related postglacial landforms
include the many lakes of northeastern Indiana, the sand
dunes along Lake Michigan, and peat bogs (Schneider,
1966, p. 40-42).  Principal moraines and the extent of
glaciation in Indiana are shown in figure 3.

The Tipton Till Plain, or Central Drift Plain, is a
nearly flat glacial till plain covering central Indiana
(fig. 2).  This area of about 12,000 mi2 is underlain by
thick till and has been slightly eroded by postglacial
streams.  Most of the boundary between the Till Plain
and the southern physiographic units coincides with the
maximum extent of Wisconsinan glaciation, except in
southeastern Indiana where the physiographic boundary
is north of the Wisconsinan glacial boundary.  The south-
eastern Indiana boundary was arbitrarily drawn along the
edge of a broad transitional zone of thin glacialdrift  that
does not obscure the bedrock physiography (Schneider,
1966, p. 40, 49).

Seven physiographic units composed of different
bedrock types comprise 15,500 mi2 in the southern one-
third of the State (fig. 2).  The bedrock is primarily
sandstone, shale, siltstone, limestone, and dolomite.  The
physiographic units generally trend north-northwest
following the strike of the bedrock.  From east to west,
the units are called the Dearborn Upland, the Musca-
tatuck Regional Slope, the Scottsburg Lowland, the
Norman Upland, the Mitchell Plain, the Crawford
Upland, and the Wabash Lowland (Schneider, 1966,
p. 42-49).  These southern units represent a sharply
divided, alternating series of uplands and lowlands or
plains.  Large parts of the Wabash Lowland, Crawford
Upland, Mitchell Plain, and Norman Upland were not
glaciated during the Pleistocene Epoch.  All seven
bedrock physiographic units extend further north than
shown in figure 2 but were buried by glacial deposits
(Schneider, 1966, p. 54).  Buried erosional surfaces of
these units are evident in the hydrogeologic sections
presented later in this report.
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The distribution of bedrock types and erosional
characteristics determines the topography of the bedrock,
which affects the thickness of unconsolidated deposits.
Thick glacial sediments are present beneath moraines
and in buried bedrock valleys.  In the southern one-third
of the State, unconsolidated deposits are thin and discon-
tinuous, especially beyond the maximum extent of glaci-
ation.  The distribution, thickness, and hydraulic con-
ductivity of these unconsolidated deposits control the
near-surface occurrence and flow of ground water
(Krothe and Kempton, 1988, p. 129).

Climate

Climate in Indiana is temperate with warm
summers, cold winters, and no distinguishable wet or dry
seasons.  Precipitation is well-distributed throughout the
year, although precipitation is somewhat greater during
March through July because of increased frequency and
intensity of showers and thunderstorms.  The average
length of the growing season, or freeze-free period,
ranges from 173 days in northeastern Indiana to 199 days
in southwestern Indiana (National Oceanic and
Atmospheric Administration, 1988).

The interaction of tropical and polar air masses
over Indiana normally results in abundant precipitation;
however, temperature and precipitation vary consid-
erably from year to year depending on the frequency of
storms and frontal passages (National Oceanic and
Atmospheric Administration, 1988).  Average annual
precipitation in Indiana ranges from 44 inches in the
south to 36 inches in the northeast; average annual
snowfall ranges from 10 inches in the south to 40 inches
in northern Indiana. Average annual temperature ranges
from 50° F in the north to 56° F in the southwest.
Monthly evapotranspiration can be as much as 8 inches
in southern Indiana in July (National Oceanic and
Atmospheric Administration, 1988; Schaal, 1966;
Visher, 1944, p. 450-461).

Geology

The regional structural features of Indiana bed-
rock include the Illinois Basin, the Michigan Basin, and
the Cincinnati Arch (fig. 4).  The two basins form the
flanks of a saddle-like structure composed of the Cin-
cinnati Arch and its branches, the Kankakee Arch and
the Findlay Arch (in Ohio).  The dip of the rocks into the

two basins is about 10 to 30 ft/mi, although the dip can
be less than 5 ft/mi at the top of the arches.  Rocks of
Ordovician, Silurian, Devonian, and Mississippian age
crop out or are present as subcrops in both of the deposi-
tional basins, whereas rocks of Pennsylvanian age are
present in Indiana only in the Illinois Basin.  The older
rocks are typically present on the crest of the arch; the
progressively younger rocks are present in each of the
basins.  Individual beds in many formations are thin at
the crest, but they thicken along the flanks and into the
basins (Gutschick, 1966, p. 7-12).  A geologic chart
including age, group or stage, selected formations, and
hydrogeologically important members or marker beds in
Indiana is shown in figure 5.

Rocks of the Precambrian crystalline basement
complex are found at estimated depths of 3,000 to
6,000 ft in the northeastern two-thirds of Indiana and
6,000 to 14,000 ft in the southwestern one-third (Rupp,
1991).  Overlying the Precambrian bedrock is a Cam-
brian section of sandstone with lesser amounts of
siltstone, and shale that is approximately 1,000 ft thick in
eastern Indiana to 3,000 ft thick in northwestern Indiana.
The Cambrian rock composes about one-third of the
Paleozoic section in Indiana (Shaver and others, 1986,
p. 119).  Overlying the Cambrian rock is 20 to 4,500 ft of
Lower Ordovician dolomite (Shaver and others, 1986,
p. 70).  The dolomite thickens toward the southwestern
part of the State.  The Lower Ordovician dolomite is
unconformably overlain by 50 to more than 450 ft of
dolomite, limestone, and sandstone of Middle Ordo-
vician age (Shaver and others, 1986, p. 4).

Late Ordovician shale and limestone is exposed at
the bedrock surface over large areas in southeastern
Indiana (fig. 6).  The shale and limestone range in
thickness from approximately 500 ft in northwestern
Indiana to 1,500 ft in southeastern Indiana (Shaver
and others, 1986).  The shale and limestone are
unconformably overlain by Silurian limestone and
dolomite.  The Silurian rocks are present as subcrops
or outcrops in east-central to northwestern Indiana
(fig. 6), primarily along the axis of the Cincinnati
Arch and the Kankakee Arch (fig. 4).  The Silurian
rocks generally range from 200 to 600 ft in thickness,
except in the southeastern part of the State, where
they were completely eroded.  Large areas of car-
bonate platform and reef banks are present in these
carbonate rocks along the flanks of the arches.

Figure 4. Regional structural features in Indiana.

Base from U.S. Geological Survey
State Base Map, 1:500,000, 1974
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The Silurian carbonate rocks are unconform-
ably overlain by Devonian dolomite and limestone
(fig. 6), which attain thicknesses of 250 ft toward the
centers of the Illinois Basin and the Michigan Basin
(fig. 4).  The carbonate rock sequence is overlain
primarily by shales and siltstones of Late Devonian
and Early Mississippian age.  These shales and
siltstones are present as subcrops in the Michigan
Basin in the northeastern part of the State (fig. 6) and
attain thicknesses of 800 ft in places.  They also are
present as subcrops or outcrops along the south-
western flank of the Cincinnati and Kankakee Arches
in the south-central part of the State (fig. 6), where
they range from 500 to 1,000 ft in thickness.  Lime-
stone of Middle Mississippian age overlies the shales
and siltstones southwest of the arches.  The area
where the limestone is exposed at the bedrock surface
trends northwest through the south-central part of the
State.  The Mississippian limestone ranges from 200
to more than 1,000 ft in thickness; the thicker
deposits are in the southwestern corner of Indiana
toward the center of the Illinois basin.

The limestone is overlain in the southwestern
one-third of Indiana by rocks of Early Mississippian
age and Middle and Late Pennsylvanian age (fig. 6).
The rocks are composed of sandstone, shale, and thin
but extensive beds of limestone, clay and coal.  The
beds of clay and coal are generally found above a
major unconformity between the Mississippian and
Pennsylvanian rocks.  These rocks range from 1,000
to 2,000 ft in thickness.

There was little known deposition in Indiana
between the end of the Pennsylvanian Period and the
beginning of the Quaternary Period.  During this
time, the land surface was mostly an erosional surface
that consisted of northwest-trending limestone plains,
shale lowlands, and sandstone uplands (Wayne, 1966,
p. 27).  Rivers were entrenched in the bedrock; the
main preglacial river valley in north-central Indiana
was the Lafayette Bedrock Valley System (Bleuer,
1989), also known as the Teays valley, which drained
most of the northern one-half of the State (fig. 7).
The preglacial topography of most of the northern
two-thirds of the State was buried beneath 50 to more

than 400 ft of glacial debris during the Quaternary
Period (Gray, 1983).

The earliest widespread evidence of conti-
nental glaciation in Indiana was from glaciers of pre-
Illinoian and Illinoian Age.  They extended through
the northern three-quarters of Indiana (fig. 3; Wayne,
1966, p. 33).  These pre-Wisconsinan glaciers
deposited at least eight till units in Indiana that
comprise approximately 75 percent of the glacial
deposits in the Tipton Till Plain (A.J. Fleming,
Indiana Geological Survey, 1990, written commun.)
The only known pre-Wisconsinan deposits exposed
at the surface are found over large areas south of the
Wisconsinan glacial boundary (fig. 3).  These
deposits are composed of a sandy loam till of the
Jessup Formation and deposits in proglacial lakes and
outwash plains in southwestern Indiana (Gray, 1989).
Loess was deposited downwind (east) of the valleys
of the Wabash and Ohio Rivers.

There were several glacial advances in Indiana
during Wisconsinan time by three different ice lobes
(fig. 8).  The furthest advance in the State was by the
Erie Lobe, which covered the northern two-thirds of
Indiana.  The ice, which formed the Shelbyville
Moraine in southeastern Indiana, was followed by
another advance of the ice that formed the Craw-
fordsville Moraine (fig. 3).  The two advances were
from a northeastern source of ice and deposited till
known as the Trafalgar Formation over large areas of
central Indiana (Gray, 1989).  As the ice receded, it
left large amounts of sand and gravel in the form of
valley train, kames, and eskers (Wayne, 1966, p. 36).

The next major Wisconsinan advance involved
three ice lobes that competed for space in the north-
ern one-third of Indiana.  The Saginaw and Erie
Lobes (fig. 8) advanced across north-central Indiana
and formed the Packerton Moraine (fig. 3).  The
Saginaw Lobe left behind a complex suite of deposits
of till, ice-contact stratified drift, and outwash (Gray,
1989) and formed most of the lakes in Indiana
(Wayne, 1966, p. 36).  The Lake Michigan Lobe
(fig. 8) flowed out of the basin of Lake Michigan and
formed the Maxinkuckee Moraine (fig. 3).  The lobe

receded and built the Valparaiso Moraine (fig. 3) and
a large outwash fan south of the moraine.  The Erie
Lobe crossed into northeastern Indiana and formed
the Union City Moraine and a series of concentric
moraines to the northeast of the Union City Moraine
(fig. 3).  The ice lobe primarily deposited a clay-rich
till of the Lagro Formation between the moraines
(Gray, 1989).

Since the recession of the glaciers from Indiana
about 8,000 years ago, deposition has been minor.
The principal postglacial change was the redistri-
bution of sand and silt of the glacial flood plains into
windblown dune and loess deposits.  Muck, peat, and
marl formed in swampy areas andalluvial deposits
formed along the modern rivers (Wayne, 1966,
p. 37).

Hydrogeology and Ground-Water Flow

In northern Indiana, large areas of sand and
gravel deposits in outwash plains and valley trains are
capable of yielding as much as 2,000 gal/min of
ground water. In addition, large yields (as much as
several hundred gallons per minute) are available
from productive Silurian and Devonian carbonate
bedrock aquifers that underlie much of the area.

Significant ground-water resources are found
in central Indiana along the valleys of the major
rivers and streams (fig. 1).  Intertill sand and gravel
aquifers are present locally in the till plain throughout
most of central Indiana.  The Silurian and Devonian
carbonate bedrock is a commonly used aquifer in
central Indiana.

In the southern one-third of Indiana, major
unconsolidated sources of ground water are limited to
the valleys of the Wabash, White, Whitewater, and
Ohio River systems (fig. 1).  Mississippian, Devo-
nian, and Silurian bedrock are sources of ground
water in south-central and southeastern Indiana.
Pennsylvanian sandstones are typically the most
productive bedrock units in southwestern Indiana.
Many areas in the southern one-third of the State lack

adequate ground-water resources for purposes other
than domestic (Clark, 1980, p. 34).

The productivity of different types of aquifers
can differ greatly depending on certain fundamental
characteristics.  One fundamental characteristic of an
aquifer is the ability to store water in pores.  This
porosity can be in the form of intergranular spaces as
in sand and gravel; fractures and solution openings as
in carbonate rocks; or intergranular spaces and
fractures as in sandstones (Todd, 1980, p. 37-39).  As
unconsolidated sediment turns to stone, or becomes
lithified, the original porosity of the sediment is
reduced by cementation, compaction, and pressure
solution (Davis, 1988, p. 325).  Therefore, lithology
is an important control on aquifer productivity,
because it affects primary and secondary porosity and
hydraulic conductivity.  Different types of openings
or pore spaces in geologic material are shown in
figure 9.  Openings that formed at the same time as
the rock, such as pores in sedimentary deposits, are
called primary openings (fig. 9a).  Pores that formed
after the rock is formed are called secondary open-
ings (fig. 9b and 9c).  The diameter of pores in sedi-
mentary deposits can range from a few micrometers
in clays to more than a centimeter in coarse gravel
(Heath, 1988, p. 15) to the size of caves in carbonate
rocks.  An aquifer must be able to transmit water
through such openings.  This characteristic, called
hydraulic conductivity, is dependent on the intercon-
nected porosity of the material, the type of liquid, and
the magnitude of the gravitational field (Lohman and
others, 1972, p. 4).  The hydraulic conductivity of an
aquifer increases as grain size and the degree of
sorting increase. Hydraulic conductivity is also
usually greater in aquifers that have been enhanced
by secondary porosity, such as fracturing.  Finally, to
be productive, an aquifer requires a source of water
from precipitation or from adjacent geologic mate-
rials.  Only 8 to 16 percent of the precipitation in
Indiana, or about 3 to 8 inches per year, infiltrates
into the ground-water system.  Most of the precipi-
tation is lost through evapotranspiration, and some
runs off the land into surface waters (Bechert and
Heckard, 1966, p. 100).  Components of the hydro-
logic cycle are shown in figure 10.
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More than 25,000 Mgal of ground water
was withdrawn during 1991 in each of the White,
St. Joseph, Middle Wabash, and Upper Wabash River
basins.  Amounts between 14,000 and 25,000 Mgal
were pumped in the Ohio, Kankakee, and East Fork
White River basins.  Basins where between 3,000 to
7,500 Mgal were withdrawn in 1991 include Lake
Michigan, Lower Wabash River, Whitewater River,
and Maumee River.  In the Patoka River basin, less
than 32 Mgal of ground water were withdrawn in 1991.

METHODS OF STUDY

The Indiana Natural Resources Commission has
divided the State into 12 water-management basins
(fig. 1).  The basin boundaries generally coincide with
the surface-drainage divides of the major rivers in the
State and with the State boundary.  The management
basins provide a hydrologic framework for surface-
water and ground-water investigations in Indiana.  The
size of each basin (in square miles) is shown in table 2.
Some river systems in Indiana drain into adjacent
states.  For these systems, the size of the water-
management basin is not the same as the drainage area
of the major river in the basin.  These discrepancies are
addressed in the individual discussions of each of the
12 basins.

Construction of Hydrogeologic Sections

Five to thirteen hydrogeologic sections were
drawn for each basin to show the generalized hydro-
stratigraphy.  Stratigraphic details in hydrogeologic
sections are from water-well records on file at the
IDNR Division of Water; well-completion reports and
lithologic logs on file at the IDNR Division of Oil and
Gas; coal-test drilling records available from the IDNR
Geological Survey; State and Federal highway drilling
logs; USGS observation-well logs; and core samples
collected by the IDNR.  After drilling a hole, a driller
is required by the State to file a form that lists infor-
mation on lithology, water level, pumping rates, and
other selected information on the well construction.
All wells other than water-supply wells are labeled
with a “t” on the hydrogeologic sections to indicate
that they are test wells; dry water-supply wells or holes

Figure 10. Generalized local and regional ground-water-flow paths and components of the hydrologic cycle.
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Table 1 .  Ground-water withdrawals and pumping capability in Indiana, 1991
[Withdrawal and pumping-capability data are from Indiana Department of Natural Resources, 1993, written
commun.; Mgal, million gallons; Mgal/d, million gallons per day]

Basin Withdrawal Pumping capability

Daily
(Mgal)

Annual
(Mgal)

(Mgal/d)

White River 104. 37,800 524

St. Joseph River 87.1 31,800 607

Middle Wabash River 84.7 30,900 366

Upper Wabash River 74.8 27,300 518

Ohio River 55.9 20,400 263

Kankakee River 55.3 20,200 574

East Fork White River 39.2 14,300 254

Lake Michigan 19.4 7,090 96.4

Lower Wabash River 17.5 6,390 206

Whitewater River 11.5 4,200 53.6

Maumee River 9.34 3,410 81.6

Patoka River .086 31.5 0.3

 TOTAL 559 204,000 3,540

are labeled with a “d” on the sections.  A few wells in
each basin represent the combined lithologic data from
shallow water-supply well logs and nearby deep test-
hole logs.  These combined wells are labeled as test
wells on the hydrogeologic sections.

In the first five basins for which hydrogeologic
sections were completed (Lake Michigan, St. Joseph,
Maumee, Upper Wabash, and Lower Wabash), all
sections were oriented roughly perpendicular to the
major surface-water drainage in each basin to depict
ground-water discharge to surface water.  The
remaining seven basins included one or more sections
perpendicular to the other sections in the basin.  For
convenience, most hydrogeologic section lines run
south to north or west to east.  Logs of wells located
within 1 mi of a hydrogeologic-section line were
plotted at a density of one to three wells per mile.

Water levels shown on wells in the cross sections
represent the hydraulic head in the aquifer in which the
well is completed.  Some of the water levels are
connected to represent the generalized potentiometric
surface in an aquifer that is being tapped by a group of
wells along the section.  Water levels were not
indicated for all of the wells because they were not
available from all drillers’ logs.  The locations of all
hydrogeologic sections presented in the atlas are shown
in figure 11.  The number of section lines, length of
section lines, and number of wells plotted for each
section are listed in table 2.

The surface elevation shown on the hydrogeo-
logic sections reflects the land surface at the well and
does not necessarily portray the true topographic relief
along the section line.  For example, all the wells in a
certain area might be located in a stream valley; no

wells can be plotted in adjacent uplands even though
the uplands are within the 2-mile width of the section
line.  Therefore, the surface topography depicts a valley
and does not reflect the actual relief along the section
line.  The hydrogeologic sections are generally drawn
to a depth of 300 ft below the land surface or at least
50 ft below the bedrock surface, whichever is greater.
Only a small percentage of the water wells in the State
are greater than 300 ft deep.  Therefore, relatively little
information at greater depths is available.  Further-
more, use of water at depths greater than 300 ft is
limited by low yields and salinity (W.J. Steen, Depart-
ment of Natural Resources, 1990, written commun.;
Indiana Department of Environmental Management,
1990, p. 223).

Aquifer types depicted in the hydrogeologic
sections are sand and gravel, carbonate rock, sandstone,
an upper weathered zone in low permeability rock, and
interbedded bedrock material.  Most bedrock was
depicted as aquifer only where it is known to produce
water.  (This information is available from drillers’ logs
and previous studies.)  If the bedrock formations are
potentially water producing, then the material is
mapped as “aquifer—potential unknown.”  Much of
the complexly interbedded bedrock of Mississippian
and Pennsylvanian age, the weathered zones, and some
of the Silurian and Devonian carbonate rock was
mapped as “aquifer—potential unknown” because of
low yields,dry holes, or little knowledge about the
productivity of the material.  Almost all the Silurian
and Devonian carbonate rock within 300 ft of land
surface was depicted as aquifer even if no site-specific
information was available to confirm its productivity.
“Aquifer” and “aquifer—potential unknown” are
colored on the hydrogeologic sections, whereas
bedrocknonaquifer material and areas of unknown
geologic material are not colored.  In some sections,
part of a formation is denoted as aquifer, but the rest is
denoted as “aquifer—potential unknown” or non-
aquifer—that is, a specific formation need not be
hydrogeologically uniform throughout its extent.
Unconsolidated material was grouped into two broad
hydraulic categories:  (1) sediments that have a
relatively high hydraulic conductivity, such as sand and
gravel; and (2) sediments that have a relatively low
hydraulic conductivity, such as clay, silt, or mixed drift.
Many of the sand and gravel deposits are aquifers,

whereas the materials of low hydraulic conductivity
were labeled as nonaquifer material.  Areas where the
geology is unknown are indicated by question marks.

Construction of Aquifer Maps

The maps showing lateral extent and continuity
of aquifer types are based on interpretations of the
hydrogeologic sections, on previously published
surficial and bedrock geology maps, and on infor-
mation available from previous studies of basin hydro-
geology.  The “Quaternary Geologic Map of Indiana”
(Gray, 1989) was used to draw many of the surficial
sand and gravel aquifers that were confirmed by the
hydrogeologic sections.  Bedrock geologic maps (Gray
and others, 1987; Geosciences Research Associates,
Inc., 1982; Gray, 1982) were used to indicate the extent
of bedrock aquifers and the approximate boundaries
where aquifers were buried by more than 300 ft of
material.

The lithostratigraphic approach used in this
study to define hydrogeologic settings resulted in seven
aquifer types.  Sand and gravel deposits are designated
as surficial, buried, or discontinuous on the aquifer
maps.Surficial aquifer  indicates that the aquifer is
covered by less than 10 ft of nonaquifer material.
Buried aquifer indicates that the sand and gravel is
covered by 10 ft or more of nonaquifer material and
that the deposits are continuous in at least one direction
for several miles or more.Discontinuous aquifers
refer to lenses of sand and gravel that are not laterally
extensive (discontinuous aquifers are typical of
morainal areas).  Buried bedrock valleys were mapped
where productive aquifers are within them.  The three
unconsolidated aquifer types are shown as sand and
gravel on the hydrogeologic sections. Carbonate rock
(limestone and dolostone); sandstone; complexly inter-
bedded sandstone, shale, siltstone, limestone, and coal;
and an upper weathered zone in low-permeability rock
are shown on the sections and on the aquifer maps.  All
of the complexly interbedded material shown on the
sections is shown on the map as “aquifer—potential
unknown” because of the uncertainty in mapping the
water-producing zones on a regional scale.  Areas
typically devoid of formations capable of producing
yields sufficient for domestic purposes are indicated as
nonaquifer material on the maps.
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Limitations of the Methods

In areas where large numbers of well logs were
available for plotting, the logs with the location
nearest the section line, the most complete well-
record information, and the deepest hole were chosen
for the hydrogeologic sections.  This search for strati-
graphic and hydrologic information resulted in a bias
toward deep wells and deep aquifers in many
locations.

The hydrogeologic sections represent the inter-
pretation of the well-log data by the author(s) for
each basin.  The sections do not represent the only
possible explanation or representation of the hydro-
geology at that location.  The reliability of the sec-
tions can vary within each basin depending on the

Table 2 .  Summary of basin areas and hydrogeologic section characteristics
[mi2, square mile]

1Statewide average

Basin
Area
(mi2)

Number of
section lines

Length of
section lines

(in miles)

Total
number of

wells
Number of

wells per mile

Lake Michigan 604 9 108 212 2.0

St. Joseph River 1,699 7 148 213 1.4

Kankakee River 2,989 9 339 490 1.4

Maumee River 1,283 5 244 305 1.3

Upper Wabash River 6,918 10 594 833 1.4

Middle Wabash River 3,453 9 347 470 1.4

Lower Wabash River 1,339 9 145 193 1.3

White River 5,603 11 409 354 0.9

East Fork White River 5,746 10 499 616 1.2

Whitewater River 1,425 6 189 226 1.2

Patoka River 862 6 99 98 1.0

Ohio River 4,224 13 375 214 0.6

TOTAL 36,145 104 3,496 4,225 11.2

quantity and quality of information on the drillers’
logs.  Logs were not always available at the desired
density of two per mile.  Some hydrogeologic
sections include areas where only one well log is
plotted in a 5-mile interval.

The interpretation of the well-log data on the
hydrogeologic sections is a simplified picture of the
geology on the section.  Where lithologies change
over short lateral distances, such as in the unconsoli-
dated glacial deposits and the Pennsylvanian rocks,
well logs spaced every 1/2 to 1 mi do not provide the
needed information to depict detailed variations in
geology.  In the Pennsylvanian rocks, lithologies
were commonly lumped together to avoid over-inter-
pretation of well logs and, hence, a misleading and
inaccurate representation of the system.

Many of the hydrogeologic sections contain
logs of wells that were not drilled to the bedrock
surface.  In these areas, the topography of the
bedrock surface was transferred from the “Map of
Indiana Showing the Topography of the Bedrock
Surface” (Gray, 1982).  In these same areas, the
bedrock geology and hydrostratigraphy was mapped
with reference to the “Bedrock Geologic Map of
Indiana” (Gray and others, 1987), the “Hydrogeo-
logic Atlas of Indiana” (Geosciences Research
Associates, Inc., 1982), structural maps of the base
and top of the New Albany Shale in Indiana (Bassett
and Hasenmueller, 1979a; 1979b), structural maps of
the top of the Ordovician, Silurian, and sub-Pennsyl-
vanian surfaces in Indiana (Bassett and Hasen-
mueller, 1980; Hasenmueller and Bassett, 1980;
Keller, 1990), and other sources.

Water levels shown on the hydrogeologic
sections were measured at different times by different
drillers in aquifers that are not necessarily hydrologi-
cally connected.  Water levels may also be a com-
posite head from several aquifers or stratigraphic
intervals, especially in uncased bedrock wells.

The aquifer map may not reflect the actual
lateral extent and boundaries of the aquifer types.
Because the section lines are 6 to 20 mi apart, the
continuity of areas between the hydrogeologic
section lines was extrapolated from the sections
or inferred from published sources.
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DEFINITIONS OF SELECTED TERMS

The following are definitions of selected terms as
they are used in this report; they are not necessarily
the only valid definitions of these terms.

Alluvial deposits (or alluvium).  Unconsolidated
sediment deposited in river channels or on flood
plains by a stream.

Aquifer. A formation, group of formations, or part
of a formation that contains sufficient saturated
permeable material to yield quantities of potable
water for domestic purposes.  An aquifer may include
unsaturated parts of the permeable material.

Aquifer—Potential unknown.  An aquifer-type
classification that implies a formation of unknown or
poor production capabilities.  The use of the for-
mation as a water supply may result in low yields
and(or) dry holes.

Bedrock aquifer (or consolidated aquifer). An
aquifer composed of limestone, dolostone, sandstone,
coal, siltstone, or shale bedrock.

Buried aquifer.  A sand and gravel aquifer whose
upper surface is greater than 10 feet beneath the land
surface; a buried aquifer is not discontinuous.

Confined aquifer. An aquifer whose potentiometric
surface is higher than the top of the aquifer.

Discharge area.  An area where water is lost from an
aquifer; commonly a surface-water body or an area of
intensive ground-water pumping.

Discontinuous aquifer.  A sand and gravel aquifer
composed of small, detached sand and gravel
deposits that are less than about 15 square miles in
extent, and separated from other aquifers by non-
aquifer material.  Discontinuous aquifers can be
either surficial or buried.

Drift.   A general term for all material transported by
glacial processes and deposited directly from melting
ice or by meltwater streams.

Dry hole.  A hole abandoned during drilling for lack
of water.

Hydraulic head (or static head).  The height of the
surface of a column of water above a standard datum
that can be supported by the static pressure at a given
point; the sum of the elevation head and the pressure
head; the level to which water will rise in a properly
constructed well.

Loess.  A blanket of fine-grained material, typically
silt, deposited by the wind.

Nonaquifer material.  Sediments with low hydraulic
conductivity that normally will not transmit quanti-
ties of potable water adequate for domestic purposes.

Outwash.  Stratified unconsolidated material,
typically sand and gravel deposited by meltwater
streams flowing beyond the glacial ice; proglacial
stratified drift.

Outwash plain.  A broad, gently sloping sheet of
outwash.

Porosity.  The ratio of the volume of the voids or
openings in a rock to its total volume.

Potentiometric surface (generalized).  An
imaginary surface representing the total head of
ground water in an aquifer and defined by the level to
which water will rise in a properly constructed well.

 The generalized potentiometric surface of uncon-
solidated aquifers usually represents the static head
from a discrete screened interval and generally is a
subdued reflection of the land surface.  The gener-
alized potentiometric surface of bedrock deposits is
typically a composite water level from a hole open
through many lithologies.

Recharge.  Water that is gained by an aquifer..

Saturated.  The condition in which the pores of a
material are filled with water.

Surficial aquifer.    A type of aquifer whose upper
surface is within 10 feet of the land surface; a sur-
ficial aquifer is not discontinuous.

Till.   An unsorted, unstratified sediment deposited
directly by glaciers with little or no reworking by
meltwater.  Till is composed of clay, silt, sand, gravel
and(or) boulders.  The term till is used in place of
diamicton in the text.

Unconfined aquifer (or water-table aquifer).  An
aquifer whose upper surface is the water table.

Unconsolidated aquifer.  A type of aquifer com-
posed of sand, gravel, or a mixture of sand and
gravel.

Valley train.   A long, narrow body of outwash
deposited by meltwater streams far beyond the
margin of active glaciation, and confined laterally
within a valley.

Yield (or potential well yield).  The maximum
pumping rate that can be sustained in a well without
lowering the water level below the water intake.  The
maximum potential well yield is supplied by a pro-
perly constructed, fully penetrating, large diameter
well.


